Analytical Methods for Ecology, Evolution, and Natural Resources

Fall 2021

11:372:369; 11:216:369 Fall (3 credits)

When M-Th 12:10 – 1:30* Where: Food Science Room 109. <u>Cook Campus</u>

The general format for the class will be lecture on Mondays and hands on application in Excel and R (mostly R) on Thursdays. Due to the shortened first week of school, this format will start in Week 2.

Instructor: John Wiedenmann Email: john.wiedenmann@rutgers.edu Office ENR 125 Remote office hours: by appointment

COVID Protocol: Rutgers requires that all students wear masks in the classroom.

Course Objectives: Students in this course will learn concepts related to understanding the collection, processing, analyzing and visualization of data in problems ecology, evolution, and natural resource management. This course is not a comprehensive course in statistics. Rather, students will be exposed to a wide range of analytical tools, providing a foundation of quantitative reasoning skills to be built upon throughout their academic or professional careers.

Course Learning Goals: The overall learning goals for this course are for students to understand an apply basic quantitative

- 1) Become proficient in dealing with data: learn types of data, data entry, organization, manipulation, summary, and plotting in Excel
- 2) Demonstrate knowledge of probability and the standard statistical distributions.
- 3) Demonstrate the ability to test hypotheses using parametric and non parametric statistical tests
- 4) Demonstrate an understanding of the use and formulation of different models in ecology, evolution and natural resources.

DEENR Learning Goals

Goal 4: Develop a comprehensive understanding of software, hardware, field and laboratory techniques commonly used in the study of ecology, evolution, and natural resources management.

Goal 5: Demonstrate the ability to design experiments and interpret numeric and graphical data.

Goal 7: Communicate effectively orally and through written text and graphics.

Grading

Homework 50% Comprehensive Exam 30% Group project 20%

Most of the course grade will be based on \sim 5 homework assignments (\sim 10%). Homework will be due one week from the date it is given, and there is no credit for late assignments (unless special permission has been given by the instructor). Missing a single homework can mean dropping a whole letter grade. Any evidence of copying or duplication of another's work will result in a 0 for the homework for everyone involved.

The bulk of the remainder of the course grade (30%) will be based on one take home exam that covers a majority of the class material, and one group project that will be 20% of your grade.

Suggested readings

There is no required stats textbook for this course. However, there are a number of good resources for you to explore if you are interested. Note: I am providing the links to Amazon for easy exploration and to look at some reviews. You can purchase the book through the vendor of your choosing.

- <u>The analysis of biological data</u> by Michael Whitlock and Dolph Schluter: <u>https://www.amazon.com/Analysis-Biological-Data-Michael-</u> <u>Whitlock/dp/0981519407</u>
- Ecological models and data and R by Benjamin Bolker: https://www.amazon.com/Ecological-Models-Data-Benjamin-Bolker/dp/0691125228/ref=sr_1_1?crid=3IJHHIVZT1V4U&keywords=ecologica l+models+and+data+in+r&qid=1567346190&s=books&sprefix=ecological+mode ls%2Cstripbooks%2C126&sr=1-1 Individual chapters of this book are also available on Dr. Bolker's website for free: https://ms.mcmaster.ca/~bolker/emdbook/index.html
- <u>The R book</u> by Michael Crawley: <u>https://www.amazon.com/R-Book-Michael-J-Crawley/dp/0470973927/ref=sr_1_4?keywords=The+R+book&qid=1567346266 &s=books&sr=1-4</u>

Tentative schedule, subject to change. Homework due dates will always be 1 week after it is assigned. The actual due dates may shift if we get behind in the material.

Week	Topic
Week 1 (9/8)	Introduction; course objectives
Week 2 (9/12,	Understanding data, random sampling, data preparation. Introduction to
9/15)	Excel and R.
Week 3 (9/19,	Summary statistics (mean, median, mode, variance, standard error),
9/22)	application in R and Excel
Week 4 (9/26,	Plotting, application in R
9/29)	Homework 1 due by 9/29
Week 6 (10/3,	Randomness in nature – probability, discrete probability distributions
10/6)	(binomial and Poisson), application in R.
$W_{-1} = 7 (10/10)$	Continuous listeitertises the Nervel distribution and listics in D
Week 7 (10/10, 10/13)	Continuous distributions - the Normal distribution, application in R Homework 2 due by 10/13
10/13)	Homework 2 due by 10/15
Week 8 (10/17,	Proportion data, Hypothesis testing, Chi-squared tests, application in R
10/20)	and Excel
10/20)	
Week 9 (10/24,	Differences in means, t-tests, application in R and Excel
10/27)	Homework 3 due 10/27
Week 10 (10/31,	Analysis of Variance (ANOVA), application in R, introduction to data
11/3	sets for group projects
	Homework 4 due 11/3
$W_{aalx} = 11.(11/7)$	Completion linear regression englication in D and Excel
Week 11 (11/7, 11/10)	Correlation, linear regression, application in R and Excel Homework 5 due 11/3
Week 12 (11/14,	Dealing with violations of assumptions, non-parametric tests, application
11/17)	in R.
11,1,)	
Week 13	Multiple regression; application in R, time for group project work. Take
(11/21,11/22)	home exam due 11/22
This is the week	
of Thanksgiving.	
Tuesday follows	
a Thursday	
schedule	
Week 14 (12/5,	Simulation models; application in R; Group presentations
12/8)	
Week 15 (12/12)	Group project presentations

For this class we will using R and RStudio. R is a programming language and RStudio is a nice user interface that makes working with R much easier. You must first download and install R, then install RStudio. Follow the steps below

To Install R on a <u>Mac</u>

- 1. Open an internet browser and go to www.r-project.org.
- 2. Click the "download R" link in the middle of the page under "Getting Started."
- 3. Select a CRAN location (a mirror site I suggest any one in the US) and click the corresponding link.
- 4. Click on the "Download R for (Mac) OS X" link at the top of the page.
- 5. Click on the file containing the latest version of R under "Files."
- 6. Save the .pkg file, double-click it to open, and follow the installation instructions.
- 7. Now that R is installed, you need to download and install RStudio.

To Install RStudio

- 1. Go to www.rstudio.com and click on the "Download RStudio" button.
- 2. Click on "Download RStudio Desktop."
- 3. Click on the version recommended for your system, or the latest Mac version, save the .dmg file on your computer, double-click it to open, and then drag and drop it to your applications folder.

To Install R on a <u>PC</u>:

- 1. Open an internet browser and go to www.r-project.org.
- 2. Click the "download R" link in the middle of the page under "Getting Started."
- 3. Select a CRAN location (a mirror site I suggest anyone in the US) and click the corresponding link.
- 4. Click on the "Download R for Windows" link at the top of the page.
- 5. Click on the "install R for the first time" link at the top of the page.
- 6. Click "Download R for Windows" and save the executable file somewhere on your computer. Run the .exe file and follow the installation instructions.

7. Now that R is installed, you need to download and install RStudio.

To Install RStudio

- 1. Go to www.rstudio.com and click on the "Download RStudio" button.
- 2. Click on "Download RStudio Desktop."
- 3. Click on the version recommended for your system, or the latest Windows version, and save the executable file. Run the .exe file and follow the installation instructions.