Meeting Times:
M 12:35-1:55 PM ENR 237 (CRSSA Teaching Lab)
Th 12:35-1:55 PM ENR 123

Instructor:
Dave Smith
Email: dave.c.smith@rutgers.edu
Office: ENR 127

Course Website:
http://onlinelearning.rutgers.edu/ecollege

Course Objectives: students should learn the fundamentals of digital analysis, interpretation and application of satellite remotely sensed imagery. Students should develop an understanding of digital image processing techniques (including the basic data structures and algorithms involved) and become proficient in the hands-on application of these techniques using the ERDAS image processing workstations. Students should learn not just how but also why and when to apply digital image processing techniques in the analysis of remotely sensed imagery.

Graduate students: additional journal articles on Sakai and on reserve at Chang

Jan 23 Lecture: INTRODUCTION TO SATELLITE IMAGE ANALYSIS
Web Lecture 1 & Supplemental: Image Data Acquisition
Homework 1: Ordering LANDSAT Images
Reading: Ch 1, 2, 3; ERDAS CH. 1, 3
Remote Sensing Applications article review handed out

Jan 27 Lab INTRO: Introduction to ERDAS IMAGINE and Graphical Modeler

Jan 30 Lecture: IMAGE DISPLAY AND ENHANCEMENT
Web Lecture 2 & Supplemental: Image Statistics
Homework 2: Image Statistics
Reading: CH 4, 5:151-164, 8:255-272; ERDAS Ch. 4, 6:141-157, ERDAS App A Math Topics

Feb 3 Lab 1: Image Segmentation

Feb 6 Lecture: IMAGE RESTORATION & ATMOSPHERIC CORRECTION
Web Lecture 3
Homework 3: Landsat TM Thermal IR Calibration
Reading: CH 6; ERDAS Ch. 5:132-135;

Feb 10 Lab 2: Image Normalization

Feb 13 Lecture: IMAGE RECTIFICATION
Web Lecture 4 & Supplemental: Cartography and Map Projections
Homework 4: Geometric Correction
Reading: CH 7; ERDAS CH 10, 13, App. B
Feb 17 Lab 3: Geometric Correction
 Homework 4: Geometric Correction
 Reading: CH 7; ERDAS CH 10, 13, App. B

Feb 20 Lecture: SPATIAL ENHANCEMENT/FILTERING
 Web Lecture 5
 Homework 5: Spatial Filtering
 Reading: CH 8:276-329; ERDAS Ch. 6:157-160, 189-201
 REMOTE SENSING APPLICATIONS ARTICLE REVIEW DUE

Feb 24 Lab 4: Spatial Enhancement
 Homework 5: Spatial Filtering
 Reading: CH 8:276-329; ERDAS Ch. 6:157-160, 189-201

Feb 27 Lecture: MULTI-IMAGE MANIPULATION
 Web Lecture 6
 Homework 6: Principal Components Analysis
 Reading: CH 5:164-169, 8:274-276, 296-301; CH 11:443-445; Field Guide CH 6:162-183
 TAKE-HOME EXAM DISTRIBUTED (Due Thursday Mar 13)

Mar 3 Lab 5: Principal Components Analysis

Mar 6 Lecture: IMAGE CLASSIFICATION: UNSUPERVISED CLASSIFICATION
 Web Lecture 7
 Homework 7: Spectral Clustering
 Reading: CH 9:379-389; Field Guide CH 7:221-225, 231-235

Mar 10 Lab 6: Unsupervised Classification

Mar 13 Lecture: SUPERVISED CLASSIFICATION
 Web Lecture 8
 Homework 8: Supervised Classification Algorithms
 Reading: CH 9:337-389; Field Guide CH 7:257-231, 235-253
 TAKE-HOME EXAM DUE
 GRADUATE STUDENTS: RESEARCH PROJECT PROPOSAL DUE

Mar 17 & 20 Spring Break

Mar 24 Lab 7: Supervised Classification

Mar 27 Lecture: CLASSIFICATION REDUX: ADVANCED METHODS
 Web Lecture 9
 Reading: CH 9:389-401, CH 10, CH 11:445-457
 Return/Review take-home exam
 GRADUATE STUDENTS: RESEARCH PROJECT OUTLINE DUE

Mar 31 Lab 8: Knowledge-based Classification

Apr 3 Lecture: ACCURACY ASSESSMENT
 Web Lecture 10
 Homework 9: Accuracy Assessment
 Reading: CH 13, Field Guide CH 6
Remote Sensing

Spring 2014

Apr 7 Lab 9: Accuracy Assessment
Apr 10 Lecture: VEGETATION INDICES
 Web Lecture 11
 Homework 10
 Reading: CH 8:301-322, CH 11:431-443, 457-462
Apr 14 Lab 10: Vegetation Indices
Apr 17 Lecture: HYPERSPECTRAL REMOTE SENSING
 Web Lecture 12
 Reading: Field Guide CH 10-11
Apr 21 Lab 11: Hyperspectral Remote Sensing
Apr 24 Lecture: CHANGE DETECTION
 Web Lecture 13
 Reading: CH 12
Apr 28 Lab 12: NJ Change Detection
May Lecture: FUTURE DIRECTIONS
 Web Lecture 14
May 5 Lab 13: Classification Project Work Day

May 5 CLASSIFICATION PROJECT DUE; PROJECT SYNTHESIS
 TAKE-HOME FINAL EXAM DISTRIBUTED

May 13 FINAL TAKE HOME EXAM: DUE 9AM

COURSEWORK EXPECTATIONS:

Reading assignments are expected to be read prior to the class date that is listed in the syllabus above. Students are expected and encouraged to ask questions concerning the reading assignments and lecture material. If you don't ask, I won't know you don't understand. Graduate students will meet every other week at a time to be decided in class.

Homework assignments have been designed to supplement the lecture material and give the student added preparation in some of the details. Homework will be distributed on Mondays and will be returned (completed) to your instructor the following Monday. Each homework assignment is generally worth 3 points: 0 - not completed; 1 - unsatisfactory; 2 - satisfactory; 3 - excellent. Late homework will be downgraded by 1 point.

Lab assignments are hands-on exercises using the ERDAS image processing work stations. During lab periods, students will work in groups (of 2) to complete the exercises. Interaction between students and the professor is expected and encouraged. Students are encouraged to work in the CRSSA teaching lab, alone or with other class members, outside of normal class periods. Don't let your lab partner do
everything - students are expected to develop the proficiency to work unassisted on the ERDAS systems. There will be six lab assignments (5 pts each) during the first half of the semester. Graduate students will have a major cumulative lab assignment during the second half (worth 50 points).

There will be a take-home exam and a final exam. These exams will be on the material covered in lecture, lab and the reading. There will be a literature research paper due during the first half of the semester focusing on RS applications. There are a series of extra readings for graduate students; we will meet biweekly to discuss.

There will be a final project incorporating hands-on image classification and/or change detection and/or RS/GIS integration, etc. The work to complete the project will be done outside of normal class meeting times. Each student is expected to work independently. You can confer with other students on different approaches, techniques used, etc., but the final results and project write-up should be your own. A separate handout concerning the project will be distributed later in the semester.

The CRSSA teaching lab is open 5 days a week (Monday to Friday) from 8:30AM to 6PM. Additional weeknight and weekend hours will be posted. You will only be able to work on the ERDAS Image Processing systems during CRSSA’s normal posted hours (check www.crssa.rutgers.edu/help/lab_sched_html). No eating or drinking is allowed in the lab.

GRADING:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90-100</td>
</tr>
<tr>
<td>B</td>
<td>80-89</td>
</tr>
<tr>
<td>C</td>
<td>70-79</td>
</tr>
<tr>
<td>D</td>
<td>60-69</td>
</tr>
<tr>
<td>F</td>
<td>Below 60</td>
</tr>
</tbody>
</table>

Grading Scale is quite standard; though there may be some scaling, use the following as a guide.